CMU
Curricular
Seperating Faculties
Search for Curriculums
Bachelor’s Degree
Master’s Degree
Doctoral Degree
Other Curriculums
|
Studying at CMU
Application of Bachelor's Degree
Application for Graduate Studies
Application of International Program
CMU Presidential Scholarship
|
Faculties and Departments
Faculties
CMU’s Organizations
Other Division
|
TH
EN
CN
TH
EN
CN
Curricular
Seperating Faculties
Search for Curriculums
Bachelor’s Degree
Master’s Degree
Doctoral Degree
Other Curriculums
Studying at CMU
Application of Bachelor's Degree
Application for Graduate Studies
Application of International Program
CMU Presidential Scholarship
Faculties and Departments
Faculties
CMU’s Organizations
Other Division
News
Research and Innovation News
Outstanding News
Outstanding Staff
Prize and Pride
Conference and Seminar
Executives' News
Job Application
Procurement
Event Calendar
COVID-19 and PM2.5
About CMU
Background
The 60th Anniversary of Chiang Mai University
Resolution/ Vision/ Mission/Values and Organizational Culture
Authority
The University’s Logo
About CMU
Open Data Integrity and Transparency Assessment : OIT
CMU 360
Sustainable Development Goals
Organizational Structure and Administration of Chiang Mai University
Education Development Plan 5 years
Committee of University Council
Executives
Deans
Directors
Employee Council
Download CMU Powerpoint Template
Q&A
Privacy Policy
Contact
Suggestion
ข่าว
ผศ.ดร.ชนิดา สุวรรณประสิทธิ์ คณะสังคมศาสตร์ ได้รับการตีพิมพ์ผลงาน Scientific reports SCOPUS : Q1
29 พฤศจิกายน 2567
คณะสังคมศาสตร์
บทความวิชาการ เรื่อง Mapping burned areas in Thailand using Sentinel-2 imagery and OBIA techniques
โดย ผศ.ดร.ชนิดา สุวรรณประสิทธิ์ ภาควิชาภูมิศาสตร์
ได้รับการตีพิมพ์ : Scientific Reports ปีที่ 14 ฉบับที่ 1 เดือนธันวาคม 2567
Scopus : Q1
อ่านบทความได้ที่ :
https://cmu.to/I4jU6
Abstract
Monitoring burned areas in Thailand and other tropical countries during the post-harvest season is becoming increasingly important. High-resolution remote sensing data from Sentinel-2 satellites, which have a short revisit time, is ideal for accurately and efficiently mapping burned regions. However, automating the mapping of agriculture residual on a national scale is challenging due to the volume of information and level of detail involved. In this study, a Sentinel-2A Level-1C Multispectral Instrument image (MSI) from February 27, 2018 was combined with object-based image analysis (OBIA) algorithms to identify burned areas in Mae Chaem, Chom Thong, Hod, Mae Sariang, and Mae La Noi Districts in Chiang Mai, Thailand. OBIA techniques were used to classify forest, agricultural, water bodies, newly burned, and old burned regions. The segmentation scale parameter value of 50 was obtained using only the original Sentinel-2A band in red, green, blue, near infrared (NIR), and Normalized Difference Vegetation Index (NDVI). The accuracy of the produced maps was assessed using an existing burned area dataset, and the burned area identified through OBIA was found to be 85.2% accurate compared to 500 random burned points from the dataset. These results suggest that the combination of OBIA and Sentinel-2A with a 10 m spatial resolution is very effective and promising for the process of burned area mapping.
ข่าวบุคคลเด่น
บทความ
ข่าวเด่น
แกลลอรี่
×
RoomID:
Room Name:
Description: