CMU
课程
学院导航
课程搜索
学士学位
硕士学位
博士学位
其他课程
|
招生
本科生招生
硕士研究生招生
留学生招生
清迈大学校长奖学金
|
学院及行政机构
学院
行政机构
其他机构
|
TH
EN
CN
TH
EN
CN
课程
学院导航
课程搜索
学士学位
硕士学位
博士学位
其他课程
招生
本科生招生
硕士研究生招生
留学生招生
清迈大学校长奖学金
学院及行政机构
学院
行政机构
其他机构
新闻信息
学术与创新新闻
要闻聚焦
优秀教师风采
奖项与荣誉
研讨会
校领导新闻
招聘信息
采购信息
活動日曆
COVID-19 and PM2.5
清迈大学概览
发展历程
清迈大学60周年校庆
宗旨/ 愿景/ 使命/ 价值观和校园文化
Authority
校徽
学校概况
Open Data Integrity and Transparency Assessment : OIT
CMU 360
SDGs
组织机构框架与管理
清迈大学教育发展五年计划
理事会
学校领导
Deans
Directors
职工委员会
Download CMU Powerpoint Template
Q&A
Privacy Policy
联系方式
Suggestion
新闻信息
Assistant Professor Dr. Chanida Suwannaprasit from the Faculty of Social Sciences has successfully published her research article in Scientific Reports, a Q1-ranked journal indexed in SCOPUS.
2024年11月29日
社会科学学院
Title of the work : Mapping burned areas in Thailand using Sentinel-2 imagery and OBIA techniques
An academic article published in a journal indexed in an international database.
Scientific Reports
Volume 14, Issue 1, December 2024
Read the article at : https://cmu.to/I4jU6
Abstract
Monitoring burned areas in Thailand and other tropical countries during the post-harvest season is becoming increasingly important. High-resolution remote sensing data from Sentinel-2 satellites, which have a short revisit time, is ideal for accurately and efficiently mapping burned regions. However, automating the mapping of agriculture residual on a national scale is challenging due to the volume of information and level of detail involved. In this study, a Sentinel-2A Level-1C Multispectral Instrument image (MSI) from February 27, 2018 was combined with object-based image analysis (OBIA) algorithms to identify burned areas in Mae Chaem, Chom Thong, Hod, Mae Sariang, and Mae La Noi Districts in Chiang Mai, Thailand. OBIA techniques were used to classify forest, agricultural, water bodies, newly burned, and old burned regions. The segmentation scale parameter value of 50 was obtained using only the original Sentinel-2A band in red, green, blue, near infrared (NIR), and Normalized Difference Vegetation Index (NDVI). The accuracy of the produced maps was assessed using an existing burned area dataset, and the burned area identified through OBIA was found to be 85.2% accurate compared to 500 random burned points from the dataset. These results suggest that the combination of OBIA and Sentinel-2A with a 10 m spatial resolution is very effective and promising for the process of burned area mapping.
优秀教师风采
文章
要闻聚焦
Gallery
×
RoomID:
Room Name:
Description: